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On Filtered Binary Processes

R. F. Pawula and S. O, Rice

Abstract. The problem of calculating the probability density function of
the output of an RC f{ilter driven by a binary random process with intervals
generated by an equilibrium renewal process is studied. New integral
equations, closely related to McFadden's original integral equations, are
derived, and solved by a matrix approximation method and by iteration.
Transformations of the integral equations into differential equations are

investigated. Some numerical results which compare the matrix and

iteration solutions with both exact solutions and approximate solutions g:‘“ g >‘1
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based upon the Fokker-Planck equation are presented. ication
_—

By_“,___b__

V_Distribut_i_on/

F»»Ayailability Cuilg
‘Avail i’md/ux‘ ;
Dist Special ]

1-(

This work was supported in part by the Air Force Office of Scientific
Research (AFSC) under Contract F49620-83-C-0085 to Random Applications,
Inc, The U.S. Government is authorized to reproduce and distribute
reprints for governmental purposes notwithstanding any copyright notation
hereon,

Cney
R LIEN TP

R, F. Pawula is with Random Applications, Inc., 515 S. Junction

Avenue, Montrose, CO 81401,

*t

S. O. Rice is with the Department of Electrical Engineering and
Computer Science, University of California, San Diego, La Jolla, CA 92093,

1 Approved for public release}
distributionunlimited.

R A P L N U P



Dol 2 NL M i MENL SR angl

———-

I. INTRODUCTION

We consider the problem of determining the probability density func-
tion of the output of an RC filter when the input is a binary random process.
Such problems have been around for forty or so years, and arose during that
time largely out of intrinsic interest in the development of the theory of
random processes., Their solutions and the methods used to solve them have
provided insight, and have led to many useful applications [1, 2]. More
recently, filtered binary processes have received attention as theoretical
models of a single channel in a nerve membrane distorted by the low-pass
filtering action of recording equipment [5,15]. Most previous work has focused
attention on the special case in which the binary input process is the random

telegraph signal (with exponentially distributed intervals), and for this case

results are available for the output density function as well as for related
quantities such as the interval statistics and level crossings of the output
(5,9-11,13, 14, 17]. Few results have been obtained in the more difficult case

in which the intervals of the input are not exponentially distributed.
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For independent and identically distributed intervals with arbitrary

statistics, McFadden (6] derived integral equations from which the output

s P AT T

density can be obtained. However, because of the complexity of these integral

ol 4 s

equations, he was able to find a solution in only one special, non-trivial case.

a
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Another case that has received considerable attention, but with limited success,
i{s that in which the binary process is the result of hard-limiting of a stationary .
Gaussian noise with exponential correlation [4,7,9]. In this case, the :
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intervals of the binary process are no longer statistically independent. Al-
though exact results are available for only one special ratio of time constants
(4], approximations have been obtained by use of the Fokker-Planck equa-
tion [9] .

In this paper, attention will be confined to binary processes of the
type considered by McFadden; i.e,, each binary process will be assumed to
be constructed from an equilibrium renewal process [3,16] so that its intervals
will be independent of one another and of the state of the binary process at the
transition times, We will extend McFadden's work in several directions:

(i) by generalizing the binary input process to have different probability
density functions for the up and down intervals, (ii) by finding approximations
based upon the Fokker-Planck equation, (iii) by deriving new integral equa-
tions for the relevant density functions, (iv) by developing matrix and iterative
methods for solutions of the integral equations, and (v) by investigating trans-
formations of the integral equations into differential equations. Some numeri-
cal results which compare the various approaches will be given.

The paper begins in the next section with a brief review of the system
model, the integral equations of McFadden, and a summary of known results.
Sec. III discusses the moments of the filtered process, and Sec, IV gives
approximations based upon the Fokker-Planck equation. In Sec. V, new
integral equations are derived, and methods for their solution considered.
Transformation of the integral equations into differential equations is
examined in Sec. VI, numerical results are presented in Sec, VII, and the

final section summarizes and discusses the results,
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II., SYSTEM MODEL & KNOWN RESULTS

This section gives a brief summary of the system model and known
results, and also serves to define the various quantities that enter into the
analyses,

The system is governed by the differential equation

dy(t) " = 2
FE 3y = k), 20 1)

-1
where 3 is the RC filter time constant, x(t) = #! is the binary input
process and y{t), ly{)| < 1, is the filter output, We shall frequently use

-1
T = = .

A, The Binary Input Process. The binary process xft) is characterized by

the time intervals between its transitions, which are taken to be independent
random variables, Further, the time intervals corresponding to the xf(t) = -1
state will be taken to be identically distributed with one probability density
function, while those corresponding to the x{t) = +1 state to be identically
distributed with a different density, These densities and some quantities later

needed are

fo(t) = p.d.f. of x(t) = -1 interval length (2a)
fl(t) = p.d.f, of x(t) = -1 interval length (2b)
- =/ tfi(t)dt (2¢)
0
-ﬂ

F(s) = £if (#)} = / e St £ (t)at (2d)
1 1 0 1

-]
3o00= [ fehar 2e)

t
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All of the f's are to be considered as being defined on [0, #], and to be zero
for negative arguments, ui is the mean value of the up- or down interval,
Fi(s) the Laplace transform of the interval density, and Fi(t) the comple-
ment of the interval probability distribution function. The quantities in

(2a)- (2e) will sometimes be written without subscripts in the symmetric case

in which fy(e)=f, (0)=E(t), fy=p =p, F (s)=F ($)=F(s), and J,(0)=3F (£)=3(c).

B, The Output Process. The output process y(t) consists of segments of

rising and decaying exponentials, and consequently will have local minima and

maxima at the transition points of x(t). The probability density functions of

y(t) at these transition points enter into the analyses, At this point, it is

cun R o

convenient to define six different probability density functions associated with

y{t), and these are

Y

! po(y) = p.d.f. of y{t) at a minimum point (3a)
pl(y) = p.d.f. of y({t) at a maximum point (3b)
& p (y) = p.d.f. of y({t) at a time picked at random during an

x(t) = -1 interval (3¢)

p_{y) = p.d.f. of ylt) at a time picked at random during an :

x(t) = +1 interval _ (3d) i
ply) = unencumbered p.d.f. of y(t) at a time picked at random (3e) :
pFP(y) = Fokker-Planck approximation to pl(y) (3f)

All of the p's are zero outside the interval [-1,1] - this will be tacitly

assumed throughout and will not be stated each time an expression for one of

the p's is given, Inthe symmetric case, we have po(y) = pl(-y\ and i

p_{y) =p_(-y)
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Y ~-
_ 1
ply) = —(Jr' p_y) - T p.ly) (4a)
S0t o “1
uo+_;1
p (y) = —=—— (1 -y)ply) (4b)
- 2w
0
|®Y + -
0o 1
p_{y) = =———— (1l ~y) ply) (4¢)
- 2u,

Equations (4b) and (4c) foilow from a theorem on conditional expectation of
Mazo and Salz [8] which says* that E[y!y] = 0. Applying this to (1) gives
E[x(t)!y@t)] = y{t) which,in turn,implies (4b) and (4c) (see the derivation in
[11} for a similar situation). From (4b) and (4c) it follows that

So(tHyde_(y) =u (-ylp (y) (4d)
which also can be obtained by equating the average number per second of the

upward and downward crossings of the level v,

C. The Basic Integral Equations. The basic integral equations relating the

interval densities and densities of the output process are, with T =1/2,

1
T o 1+
Py = TS / d p1"”0(T z“lﬂf) (5a)
y
y
T N ( ) 1‘“) -
=z —— - - b7 )
pl(y) -y ‘/-1d pO()£1T11-y . (5b
T ! 1+
p_ly) = S0y [ dn ey "o(T "”1+y) (5¢)
y
v
T : - 1 -
T r—— ~ -~ "
p,ly) S -y /_1 47 Pyl )“’1(T “"1-y) (5d)

The precise mathematical conditions required are satisfied for the processes
considered here,
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Equations (5b) and (5d) were derived by McFadden (cf. (5) and (7) of [6]), who

’
wrote them in a slightly different form, and are the result of considering the
output y(t) over a time interval during which x{t) = -1, Exactly following the

same steps for an x(t) = -1 interval leads to (5a) and (5c). In the symmetric

case, McFadden changed the independent variable from y to t by means of

y = 1-2e (6)

and, by Laplace transforming with respect to the new variable t, transformed
(5b) and (5d) into algebraic expressions which enabled him to obtain a solution
in one special case. To do the same type of transformation in connection with

(5a) and (5¢) would require the slightly different change of variable

2t

y=-1+2e (7

D. Known Results. The only nontrivial cases in which exact results are known

are those of exponentially distributed intervals and McFadden's special case.
A brief summary of these follows,

-at

(i) Symmetric Case: f(t) = ae , [10,17)]
-1
2 -
1 -
ply) = (2,1}1 ) i % = aT (8a)
2°7 Bz, 1)
po(y) = (1-y)ply) (8b)

where B(u,v) = T{u) (v)/T(u+v) is the beta function.
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(ii) Asymmetric Case: :'i(t) = a, e (5]

po(y) =p_(y); pl(y) = p,(y)

(iii) Symmetric Case: McFadden Interval PDF 6]

b>a ,

- .24 b-a-1
o - ast (1-e t)
: B(a, b-a)T
, L-Tipy2®s2) - I(l_y)/z(b,a)
ply) = : > ;
2l -y)
-1 b-1
)T (L-y)
Poly) = —=Tp T
2 B(a,b)

-~
-
~

19a3)

(10a)

(10b)

(10¢)

Because of the (l-e ) term in f(t), McFadden's results hola only for the

special case that the input interval density is related to the filter time constant

through this term,

X
-1 -1
Ix(p,q) = f WP - du/B(p,q) is the incomplete beta function [12]
0
and .(z) = T'(z)/T (z) is the logarithmic derivative of the gamma function.

Qur "a'"" and " are McFadden's ''a<1l'' and 'b+1,"
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111, MOCMENTS

The moments E[yn(t)] , n=1,2,... can often be evaluated in situa-
tions of the present kind without first getting the density p(y) [7]. In the
symmetric case, all of the odd moments are zero., In gzeneral, the moments
can be expressed in terms of the Laplace transforms of the interval densities,
Fo(s) and Fl(s), and the first two nonzero moments in the symmetric and

asymmetric cases are:

(1) Symmetric Case:

2 2 1-F((®

F: - 8 [1-2F3)+2F(23)-F)F2)]{1-F(33)) (115)

) 330 (L+FE@)][1-F23)][1 +F(32)]

(1) Asymmetric Case

$, - U

- 1 0

Y T 1. (11c)
0 1

_\;—2-1 4 (1-F (3)][1-1"1(5)] 1)

Hugre)  1-FEF 6)

Equation (l1la) is derived in the Appendix, and its generalization to (11d) is
also outlined there, A recursive method for obtaining all of the moments of
y(t) as well as all of the conditional moments E[yn(t)ix(t) == 1) has recently
been developed by A, Munford [19] , and (11b) has been deduced irom his
work, The n-th moment is a function of Fo(ki) and FI(kS\ for
k=1,2,...n-1; and becomes increasingly complicated as the order of the
moment increases, The moments are significantly more complicated in the

asymmetric case than in the symmetric case.
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CKRER-PLANCX APPRCXIMATICNS

Approximations to p(y) based upon a certain linearity assumption can
e obtained by use of the Fokker -Planck equation. The Fokker-Planck approx-
imations are, in fact, exact in the case that x(t) has exponentially distributed
intervals [3,10], and are close approximations when x(t) is hard-limited
Gaussian RC noise [T, 9}. It will later be shown that the Fokker -Planck
approximation is also exact in the case of the McFadden interval density with
b=a+]l and b =a+ 2, In some other cases, the approximations are accu-
rate to within a few percent. Also, the approximations provide starting points
for iterative solutions to the integral equations, to be considered later. Our

use of the Fokker-Planck equation closely parallels that in [9] .

A, The Symmetric Case. The (extended) Fokker-Planck equation for ply) is

readily shown to be [9, 11]

_d_[
dy

in which A(y) is defined as the limit of a conditional expectation as

5
9

5
271 - y'—) p(y)] - Aly) ply) =0 {(12)

l\)lv—-

) 1 :
Aly) = lim — Ef[yt~2) - ylt) vit)] (13)
A -0 A7

n general, it is not known how to evaluate A(y). An assumption that has led

t0 an excellent approximation in one case [2] is that Aly) is approximately a

linear function of v, and, for that reason, we make the same assumption here,

Setting
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A(y) = -27 uy , u = constant (14)

in (11) and solving the ensuing equation then gives

—
1
S
—
u

PrpV) 7 —55T1

The subscripts 'FP' on the density function are intended to emphasize the
fact that the density function is an approximation based upon the Fokker-

Planck equation, and not necessarily an exact result, The unknown constant

2
u can be found by evaluating y~ by two different ways (see (l1la) and the

Appendix), and comes out to de

ZL[1+FE)] - 2[1- F(3)]

It will later be shown in Sec. VI-A {see (43) et seq.) that an exact

expression for A(y) interms of p(y) and po(y) is

iv) = 5 (=y)
Aly)  Po ¥ T RPy7Y
2

T T 2Euply) (

[
-1
—

[§ )

which provides a way of comparing the assumption (14) with the exact Aly)

when ply) and po(y') are known,

B, The Asymmetric Case. The Fokker-Planck aporoximation in the asvm-
metric case follows in much the same way as in the symmetric case, and so

the details will not be given. The results are

11
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L u- -1
ooy = )T (1ey)”
FP - -
20V lB(u,v)
where
!
v =u—u
0
(o = (- y2)
} Yo 10T
u = =
2 . 2 ) )?.
2 utvtlu-v)
v =
u*tv*urv
and, the analog of (17) is
a) _ PV -2
= 3 +I
32 3 (4 w ) ply)

Equation (11d) is an alternate expression for yz

(18)

(19)

(21)

(22)

which can be used in (20) to

give the value of the parameter u in terms of the Laplace transforms of the

interval densities,
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V., INTEGRAL EQUATICN APPRCACH

A, Some New Integral Equations. In this section, we explore ways of further

using the basic integral equations (5a) - (5d). Equations (5a) and (5b) can be
used in the integrands of one another to give integral equations in either po(y)

or pl(y) only; viz.,

5 d
T" dz ( 1+ 2 ( Al-“)
) = d- ~yf (T (2
po(y l‘y/l-i fOTJ/n1+Y)/ PO()1 ml-i 3a)
y -1
2 7 :

(YAT]

T dg l-i) - , 1+ﬂ)
pl(y)-l-y/1+ fl(Tan_y d- pl(v) fO(T m1+i (23b)
-1

By interchanging orders of integration, these can also be written as

1
Poly) = /1 Koy, ™) po(m)dn (24a)
1
pl(y>=/ Kby, ™) p (") d” (24b)
-1
where the kernels are
1
% iy oy o I f(T o) £ (T e ) A2 (25a)
Kolv ) 2 T o\t “PTeyl M\t ToTITE 2
max(y, ")
, min(y, ~)
: . T" .l Lo 1-32, as
K, ly, )-l-y/ foT"“l?i) fl(Tml_v Tiz (25b)

"Eqs. (24a) and (24b) were derived independently by R, FitzHugh in a private
correspondence.
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1
P+(y):
uOT r‘l 1+ 7
poly) = T2 / p_ () by (T i 26a)
Yy
-7 -
pl(y) :l-y /‘d“p?(") tha"l_v) (26b)
-1
in which
2R )
hi(t) = £ II-F (s) ‘ 27)

The forms of (24a) and (24b) lend themselves more directly to numerical tech-
niques than do (23a) and (23b). A matrix technique for solving them will be
discussed later in this section.

A second way of using the set of basic integral equations is that of

inverting (5¢) and (5d) to express po(y) and p,(y) as integrals of p_{y) and

Equation (20a) can be obtained by using the change of variable (7) in (5a) and
(5¢), and then Laplace transforming both with respect to the new variable., The
resulting two equations can be solved for the transform of po(y) in terms of the
transform of p_(y). Inversion then leads to (26a), Egquation (26b) can be ob-
tained in the same way by starting with (5b) and (5d) and using the change of

variable (o),

As with fi(t)' whenever hi(t) is used, it will be tacitly assumed to be
zero for negative t. When (26a) and (26b) are substituted into the integrands of
(5c) and (3d), the results are two equations containing only p_(y) and p+(y).
Employing (4b) and (4c), the first of these gives an equation involving only the

unencumbered density plv): i,e

14
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2 J !
T 4% o . 1-3 R L 1er
ply) = 2/ T+3 JI(T an l-y)/d (1-")p () ho(T dnl"":) (28)

-1 >

which can also be written as

1
p(y>=f Ky, ") p(n)d~ (29)
-1
where
5 min(y, ")
Ay s 47T W Kholl PSR LA
K(Y’ ) = l 2 / hO(T#nl—g) JI(T wsl -Y 1’% (30)
—Y 1

Any of (23a), 23b) or (29) can be solved by the matrix method of the next sub-
section,

The hit) functions will usually be more complicated than the interval
densities, however, there are some cases in which the h(t) are particularly

simple. The Laplace transform of the McFadden interval density (10a) is

Fs) = —2l-{(sT *a) (31)

F@) T(sT +b)
and the Laplace transform of the gamma interval density
an+1 e e-at
fi¢) = ; ; n=0,1,... (32)
n-
is
a n+l
F(s) = (s = a)
\ Cases in which these lead to simple forms for h(t) are:
{J
f
15
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(i) McFadden, b =a+tl

hit) = a3&(t) (34a)

(i1) McFadden, b =a+2

-(2a+l) 3¢

hit) = ad(a+1l) e (34b)

(iii) McFadden, b =a+3

hit) = 2a3 (atl)(a+2) e-3(a+1>3t/2 sin ( /3a2+0a_ 13¢/2)  (34c)

) /3a2+6a-1

(iv) Gamma, n=0

hit) = a3 @) (34d)

(v) Gamma, n =1

2 -2at

hi{t) =a e (34e)

(vi) Gamma, n =2

i) = (222703 e 322 Gin(/Fat/2) (34f)

For either the McFadden density with b-a an integer, or the gamma density,
£ “h(t)! is, in general, the ratio of two polynomials in s, An explicit form

for h(t) as the sum of complex exponentials can be written in the case of the

gamma density for arbitrary n.

B, Solution by a Matrix Method. Any of (26a), (26b) or (29) can be solved by

a2 numerical matrix method [18]. Consider (29) which, by approximating the

-

integral by a sum, can be written in the form

16
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) 2 Z K i=1 N )
oly ) =3 oy ply)s i=l,...,0 (35
j=1
where y, = -1 + (2k-1)/N. This is a homogeneous set of N simultaneous

k

linear equations in the p(yi), i=1,...,N and can be solved by solving the

associated matrix eigenvalue problem
(K-\I)P =0 (36)

Here P is an Nxl column vector with components p(y.), I is the identity
~t 1 S~

matrix, K is the NX N matrix with element ZK(yi,yj)/N and )\ denotes an

eigenvalue, The desired solution is the one for which X is nearest to one

under the normalization

N

2

£ =1 37
i§:1 p(yi) (37)

The eigenvalue problem can be solved by standard techniques from the theory

of linear algebra [18].

C. Solution by Iteration. The integral equations lend themselves to solution

by iteration in several ways depending upon which of the equations one chooses
to work with., Such a choice will be influenced, in part, by the kernels of the
equations, which are simplest in the basic equations (5a)-(5d) and somewhat
more complicated in (24a), (24b), (26a), (26b) and (29), We will describe in
detail only one of these possible iteration schemes - that which can be applied

to the basic equations,

. NI DOODN. J%
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With the idea of iteration in mind, (5a) and (5b) will be written as [18]

l g
y) = — - (*):Tz/zl'") (38a) )
pO,n+1Y T l+y Pip 0 l+vy 202
y
y
T . , 1-- ‘
pl,n*l(y) = TTTF d- pon( ) tl(T in Y) (38b)

Here, poo(y) and plo(y) represent initial starting estimates of po(y) and

pl(y) respectively. One way of getting these initial estimates is by using the
Fokker-Planck approximation pr(y) and (4b) and (4c) in the integrands of
(26a) and (26b); viz.,
4
(W tu)T [ J
u,tu
0 1 .1+~
poo(y) = 2(1+y) /dﬂ (1-n) pFP(M ho T Ml*’y) (39a) 0
y .
_1
(uy*tu )T Y Lo~ 2
(y) = ———— ~ (1) ) n /T 1 — )
plo.y) 2(1-y) /d ( pr( ) n,. Ty (39b) R
-1 R
]
These then lead to pOl(Y) and pu(y) by (38a) and (38b), and the results can .
]
again be used back in the integrands of (38a) and (38b) to give poz(y) and )
plz(y), etc, The general procedure is illustrated in Fig, 1, which also shows {
the final step of getting an estimate p(y) of p(y) at the culmination of the }
. »
iteration, It is reasonable to suppose that (see [18]) R
5
po(y) = lim pon(y) (40a) !
p,ly) = lim p, (y) (40b) .
1 In X
n - o |
y
13 "
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and that the convergence will be rapid if the initial guess pr(y) is good,
The results of some calculations using the iteration procedure will be given
in Sec. VI. As will later be seen, a single iteration is suificient in some

cases,

vy

-
D Lo}
.

1. INlustration of iteration procedure. The numbers above
the arrows are the equations to be used in going from
one step to the next, and p(y) is the final estimate of p(y).

It is also possible to iterate one of (24a), (24b) or (29), An example will 3
later be given in which pl(y) will be estimated by the single iteration of 29); i.e., :J
4
1 %

oy = ~) Ao ~
ply) jl Kly,” ) popld (41a) j
- N
which is the same as J
2 / !
g ~ ZT - - ~ a 1 - g :‘
ply) = 5 d1 poo(f) * T in — (41b) A
a u.zo+.11)(1-y)__1
‘ s N e '
P and it will be seen that the iteration is good to three significant figures. Such 1
P-: :
accuracy is possible because the Fokker-Planck 2pproximation is excellent in '
N .
many cases, 4
[o Y !

e A A .. B &
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VI, DIFFERENTIAL EQUATION APPROACH

In certain cases, the integral equations (5a)-(5d) can be turned into
differential equations, and this approach is the main concern of this section.
First, however, we consider some general relations, which can be deduced by

differentiation, for arbitrary interval densities,

A, Some Differential Formulas. Multiplying through by (1+vy), and differ-

entiating with respect to y, (5¢) leads to

In a similar way, (5d) yields

.. d
gy -y e ) = pply) - oy fy) (42b)

Adding and making use of (4b) and (4c) then gives

E(L;O+ul) d 5
——— ——— - = - {
> 3y [(1-y5)ply)] = pyly) - p (v 43)

Equation (43), when combined with (12) leads directly to (17) and (22). This
derivation of (43) illustrates the general method of turning the integral formulas
into differential formulas, and will be used in essentially the same way in the

remainder of this section.

B, Intervals with Gamma Densities, Aside from (43), it does not appear pos-

sible to use the differential equation approach without specifying the interval

statistics of the input process, so we here take fo(t) and fl(t) to be Gamma

distributed with densities ziven by (32), Then it can be shown by repeated

AR rf
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¢ foply) = 3% p ly) (41a)

i
£2

i pl(y) = po(y) (44b)

N ,El_‘_ PN

where £ and £+ are linear differential operators defined by

. g
b ol l-~ ]
. d d d “1 - A
: L ) = (1-vy) -— (1- oo — (1- — (l-y) (. g
? ! (1-vy 3y (l-y) 3y (I-vy) iy (l-y () (45a) 5
A — " 1
[ n times
¢
! Yo 4 d d -2 Y
e ) = (1+ S (14y) eee = (lty) —— (1+ . = D
P' £.(+) (1 +y) Iy (1+y) 3y (1+y) Iy (1+y) () (45b)
O —T T ——— K
5 n times ‘:
3 |
‘ g
L. Operating with £ on (44a) and £ on (44b), it follows that )
i ' g
T-: L £ pyy) - (-a42 P =0 (46a)
. -¥- % 071 Po'¥
‘ ntl
? £.4 plty) - (- :Oc.l) pl(y) 0 (46Db)
r
4
t These are linear differential equations of order 2n+2, When n=0, we have
]
F- the case of exponentially distributed intervals, and it is straightforward to
(-

show that solving (46a) and (46b) along with (43) leads to (9a) and (95}, The

vy

next simplest case is that of n=1, to which we now turn,
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2  -at . .
C. The Case £(t) = a te . For the sake of simplicity, we consider only

the symmetric case, Equation (46a) for po(y) then becomes

2.2 14) . 2, 2 2, : L2 :
(l-y™) p() ‘Z(Z-Dyﬂ'z&y)(l-y \v__)o-'-[(f)’l ‘24’1‘25)\[ ‘8(’1-2)\/-122 -8’.‘1’5)]})0
, 2, . , P + + .

- {(3-22)[Ra7-6a+3)y - 3*2&]po S{l-2" - ]po =0 47

This equation is somewhat formidable, and we have not been successful in find-
ing general solutions. However, the form of the a- mptotic behavior of piy)
around the endpoints y = =1 can be determined from it. Setting x =1 -y,

l-y =2-x, d/dy = -d/dx in (47), and assuming a solution of the form <

leads to the indicial equation

V=D [v-la+DF =0 (48)

Consequently, a power series solution to (47) will have the leading terms

-
-~

‘ 2+ 1 1,
po(.y>~cl’cz(l-y)*c3(1-y) +c4(1-y) 2 (l-y) around y=1 (493)
Similarly
plvi~ c [ fc _(l-y) +c _(1+ )a-l"rc (1- ):-1;"‘-(1‘\!\ around v =-1 {4%b)
“n e -1 -2 -3 Yy -4 "y ) v 7

The c's are constants (which could depend upon = ).

2%}

or =1, (47) can be once integrated and leads to the somewhat

simpler third order equation

.
ad

K ORI

. v
Lt B L

L. L

Ak

S ERETRE,....J RPN \_J W IV UPRIRTTST SN, . ™

T

A A USRI

2 2 " 2 ’ 2 /
(1- -~ - (1- - <+ - - ] = o~ = -
y ) py T22-y)l-yip, ~ (3ty Jpg- (l-v)lp, = const., x7 1 (50}
It is possible to get a differential equation for the unencumbered density b
22 .
’
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p(y) in the following way. Using (34e) along with (4b) in (26a) leads to the
integral formula

1
2x-1 -2~ o
po(y) = 22 {l-y) d~ (1-=)(1+~) (™) (511

y
When this is substituted back into the right-hand side of (43) for pg(y‘ and
pl(y) = po(-y), the resulting expression contains only the unknown »{y), The
integrals can be eliminated by differentiation, which then gives the third order

differential equation for ply)

2.2

‘// 2. 2 2 2 )
0=(1-y")Y p"-2(5-22)y(l-y )p = 2[(3x -11~-12)y -~ ~3c-4]p

- 2(3-21)a” - 22-2)yp (52)

As was done above for po(y), the form of the asymptotic behavicr of pfy) in
the vicinity of y = =1 can be determined from this differential equation, and
is

. 2.~

1 2. x-1. 2 ,
oly)~ &1“k2(l-y ) ‘k3(1—y )7 "ea(l-y7) around v==1 (531

From this, it is apparent that p(y) > ® as ‘y! = 1 if =<1 andthat ply)
remains finite for all y if x*>1,

In the special case x = 1.2, (43) can be once integrated, and doing so
results is

d A

= 2
L1y 5 -
dy[ v ) op']

(5v~ -3)p = constant (x=1/2) (54a)

U

i
2

2
The constant can be evaluated interms of v by integrating the differential

equation over [-1,1]. The result of this is the differential equation

23
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, dy 2 b
b' j‘i
r . \ iy . . : n . ’
Y and appropriate boundary conditions for the solution are that >ly’ de svm- ]
. ]
» metric and integrate to one. y
’ ]
' Just how appropriate boundary conditions can be ‘ound rom the integral »
’ )
F equations, in general, is not obvious. For the gamma densitv with n= 1, it is
t‘ Y
- . - : [ _
- straightforward to show from the basic integral equations that pq‘l) = podl =9,
- ' )
V‘ But, the differential equation for po(_y) is of fourth order, Ior the gamma !i
-
{ density with arbitrary n, it can be shown that po(y\ and its first n deriva- ]
i . . L L. *
tives must vanish at n=1; however, since the corresponding differential
E
L - L) .
‘ squation is of order 2n~2, an additional n-l conditions must be specified 1
P' -
4 ione of these is that the density integrate to one), )
3 .
' - ’
;l 1I. EXAMPLES ]
A
5 The results of some calculations will be given in this section in the two
i
E cases of interwvals with McFadden's density and intervals with a gamma density E|

with n=1, Only symmetric cases will be considered. Since exact results are

known for the McFadden interval density, it will be possible to use them to see

Mdn auh cul S b SE

<

] just how accurate the approximate techniques of Sec, IV are, First, though, we

consider cases in which the Fokker -Planck "approximation’ is, in fact, 2xact,

)

>

A, Mcfadden Interval PDF, b=a-1 and b=a~-2. The McFadden interval

-
S N

density (10ai degenerates to the exponential density when b=a =1, and it is '

known that the Zokker-Flanck density is then exact. What is somewhat

Ty

‘ surprising is that the Fokker-Planck "approximation’' » pfy‘) is also exact .‘

rr]

when b=a<~2, From (10b), when b=a*2,

4

:

24

VP

- i N ) N I Ty § . s iatam et as Aathada..al a
I R P A Mo R b oat mams m ot ml Al aP u® A . A a AL PSPPI Y - ala




e
-

CEBLRE san I e~ 4 I

Y

b o g ancins on oy

el

7 T LA IS SAA SN and ats gen e ai RAL AR SREING SAE RN ARSI A SR TRV T, TSI e T T e
E B e A G s SRt st o6 Y AR R Sads Fit SR -

- 1 1

The ==~ (33)
a a-l

and then using this and (31) in (1o) leads to u=a. Consequently,
2 a-1
{1-y*) ,
p(y) = Prply) = 'aa_y; (56)
) 2~ B(a,a)

The Fokker-Planck result comes from (13), and it can be verified that (10b) for
o(v) is the same as (50) by first changing variables of integration in one of the

incomplete beta functions (by letting u~ 1-u) in (10b), and then integrating by

parts twice.

3. McFadden Interval PDF, b=a+3, In this case,

4]
T
1

t

1
n
~1

3ala+1l)(at2)
i
33”7 + 10a *+ 6

[
I
-~
()
[0 o]

and, again changing variables of integration in one of the incomplete beta func-

s
%2

tions in (10b), and integration by parts three times gives

(2a+1) (1-v2) %" (3a+i+ay™) <o)
ply) = > 52 (5¢
(3a +6a~-2)2 Bla,a)

This is not of the same form as pFP(y).

For the special case 3=1 and a=1, we have 4 =11/6, u=18/123 and

The probability density p(y) can be expressed as a polynomial in v when-

ever b =a+m and m is an integer - then m integrations by part iare recuired
to get the polynomial form from (10b),

25

- - DU I WS U SN S G SN S Sy Wl UPRes %

‘{Aln'g“

PR |, VI

"

.

Y o

('3

i le A as

v gl RS




P T——

LI . S S

Pp——
ll'.",'<
-
.
N

) -2 2 e anen o b e b ee T R i RS N AL SN

e

and the exact ply) is

Table I compares values of ply), pr(y) and ply), the result of a single

iteration by means of (41b),

&

nit)=372 e 3t sin(J/3t)

-1/19
( (l-yz)

L e d ade witb e fell S Sal A ECENEC S AdE AL NN SRS

Prply) =
FP 21719 8(18/19,18/19)

pt.p(y) - = as y-= 1, ply) approaches the correct value.

accurate to three significant figures.

C. Gamma Interval PDF, n=1,

(32), (33) and (lo) give

_ 2., _a
L““a’ e 2

1+23..
1+~ '

2 =aT

As can be seen from the table, even though

Also, ply) is

For the gamma interval density with n=1,

(60a)

(60b)

(60c)

(60d)

(60e)

61)

The Fokker-Planck approximation is especially simple when u=1; i.e., when

1=(l +4/17)/4, Then D

FP(Y) = 1/2, and (39a) gives

% 4 _
In this case, (60e) and (11b) each resultin y =81/383,
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Table I. Mcradden Interval PDF, a=1,b=4, 3=z
Comparison of Approximate and
Exact Densities
y ply) ply) Prp(¥)
0 L2773 . 4775 .+836
2 . 4800 . 4801 . 1847
.3 . 4882 . 4883 . 1881
.6 .5018 .5018 L1951
.8 . 5209 .5209 .5103
9 . 5325 . 5324 .5278
.99 . 5441 . 5440 .5943
. 999 . 5453 . 5452 .6707
1 . 5455 . 5454 ®
Pooly) = 2 } 21;‘1)/@ = - (1;5_%/2 + 2@2-1i s oa= (1+/T7)/4 62)

This poo(y) was used to do one step of the iteration as outlined in Fig. l, and
the results are plotted in Fig. 2, Also shown on the figure are the results of

an 8x8 matrix approximation to the integral equation for po(y). As the curves
show, both poo(y) and p,; (y) agree well with the matrix approximation except
in the vicinity of y=-1, In this region, only pOl(Y) has the correct asymp-

totic behavior as predicted by (48a), Also, p(y) has the correct asymptotic

form as given by (52),

The conditional moment A(y) was computed from (17) using 001(\; and

Sly) for po(y) and ply) respectively, and is shown in Fig, 3. As the figure

(3]
~1
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shows, A(y) is nearly linear excepnt in the vicinity of the endpoints, By

(4¢3) and the asymptotic form (49a), it can be shown that ».(y}/nly) » 4 as

p

0 )

y = -1, and consequently from (17) that ]
- Aly) J

;-Y - 1 as y=~1 (63) q

3

»

which is consistent with the behavior depicted in Fig, 3. Similar computations
were repeated for the case 2 = 1/2, and are also shown in Fig. 3,
Fig. 4 contains curves of pOI(y) for 2 =1/2, 1, 3 and 7 which

were obtained by the same iteration procedure as just used for = = (1 +J/17) /4.
These curves agreed to within a few percent with the results of an 8x8 matrix ?
approximation except in the case 2=1/2, Because po(y) tends to bunch up
around y =-1 for small 1, a matrix approximation with more points, or
with nonuniform spacing, becomes necessary. In contrast, iteration was

found to work well even for the smaller values of .

D. McFadden Interval PDF, a=6, b=4l, In all of the previous cases, the

Fokker-Planck approximations were themselves good approximations to p(y),

O A A & & SRS 8 % ok odoodd

A case in which this is not so is that of the example used by McFadden in which 1

a=0, b=+41 and 2 =1. In this case,

34 1

1 L

U Z Tz 1,99520... (64) k

- nt+té !

n=0 ]
.35 _ -
LT e T 1,47214,.,. (65)
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Fig. 3 gives a comparison of p(y) and pFP(y)' and Fig. 6 shows the actual

: 2
l and Fokker-Planck approximation to -A(y)/2 . The conditional moment is
far from being approximately linear, and pFP(y) is not a 3ood approxima-

tion to p(y). Fig. 5 also shows some values of p(y) which were computed

O FIEION

ﬁ from (41b) and are listed in Table II. The agreement of this single iteration
with the true p(y) is excellent except in the region where p(y) is rapidly
changing.

In doing the calculations to get p(y), it was found easiest to evaluate

the terms in the integrand of (41b) from

} 3
, € a-1 !
b- b-1- . 1
Fiann =1- D (P01 gl (66)
; k=0 ‘
s 1
t in which a and b are integers, and
;
- -3t 1 -3t ,-1)B(sT, 2u+1) sF(s) |
” . + 2 - - T , " -
s pOO( 1+ 2e ) 54 Te £ | BT, ¥ (s) (67)
5 where F(s) is given by (31). Eq. (66) is the result of repeated integration
.
b
; i by parts when (10a) is used in the definition of 3 (t), and (67) follows by
. 4
E recognizing that (39a) is a convolution when the change of variable (7) is é
[ ] 2~ <
E— employed for y and the change = = -1 +2e in the variable of integration. .
? .
[ The inversion in (67) was done along the imaginary axis by means of the
; FFT. |
e
b
29
".v
’.
k.
B-. -a . ";1-:.':- ‘_~- ‘_‘:-_‘.., -A‘ o ._A_. PR ‘.g;'~- TN U S RPN RN S A et s i
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Table II. McFadden Interval PDF, a=5, b=41, 3 =1, )
Comparison of Approximate and Exact

Densities {
¥ p(y) ply) Prp(y)
0 5012 5012 L6297 '
L2 L5221 .5221 L6177
L4 .5955 .5956 . 5800
.6 .7206 . 7297 .3101
.8 4321 . 3933 . 3888

VII, SUMMARY AND CONCLUSIONS

The problem of calculating the probability density function of the output
of an RC filter driven by a class of binary random inputs has been studied in
detail., Some new integral equations were derived, and methods for their
solution were developed. Also, transformations of the integral equations into '

differential equations were investigated. Exact and approximate results were

compared in several examples.

The matrix solution technique was seen to work well for the cases in

which the densities being computed were smoothly varying, but requires a

finer grid with more points to yield any erratic behavior, Iteration was seen
to work well, with only a single iteration required when the initial estimate

was good. In the last example of the McFadden interval PDF with a =0,

¢ |
{ b =41, even though the initial estimate was not particularly good, the single 4
. iteration was within 10% of the correct value. This example and the first

° example are felt to establish the veracity of the iteration process. The !

Fokker-Planck approximation was seen to not only be a good estimate for
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starting the iteration, but, in many cases, to be in itself an excellent

approximation to the desired p(y).

All in all, the differential equation approach was disappointing since ;
it had been hoped that it would lead to new closed form solutions, The differ- )
ential equations are not only complicated in themselves, but correct boundary
conditions for their solutions are not apparent in the general case. Never-

theless some useful asymptotic information was obtuined.
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APPENDIX. CALCULATION OF y°

| <

[§%]

This appendix shows how y~ is determined from the system equation
for arbitrary interval statistics of the binarv input process. We will give the
derivation only tor the symmetric case, and rely heavily upon some results in
Cox's book [3] on renewal theory,

The mean square of. y(t) can be obtained by integrating the power

spectral density Sy(f). Relating Sy(f) to the spectral density Sx(f) of the

input binary process then results in

> .2
- 378 () 4
y = = > p- (AD o
32 + 1)-' 2 b

S?(f) can be further expressed in terms of the generating function of the

number of renewals of an equilibrium renewal process as

S_(t) =/ R (t)e’ -e " har '
x X é
0

5 sz 1
= G, (-iw, -1+ G_lix, - 1) (A2) ]
L
i

where R‘{(”‘) is the autocorrelation function corresponding to Sw(f‘, and
G;(s, %) is the generating function defined by Cox and evaluatad by him as 1
(3, eq. (3.2.6}] q
* 1 2 1 -Fl(s) 3
G ) — (. <
& D E o T TR A3) .’
4
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Using (A2) and (A3) in (Al) and doing the integrals by residue theory gives

2 L2 L-F(3)
You T 1-F(3)
Another expression for yz follows from (14); viz.,
2 1
Y T 1+2u

Equating (A4) and (A3) yields (lo),

fA4)

The asymmetric case follows in much the same way using Cox's results

on alternating renewal processes [3, Sec., 7.%].
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